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Abstract

This thesis provides a method for determining the detection of partially cor-

related Rayleigh distributed radar returns by a pulsed search radar. The receiver

consists of a quadrature demodulator receiver, followed by a square law envelope

detector and a linear post-detection integrator. In addition, a technique for de-

termining the pulse-to-pulse correlation of a complex target is given using inverse

Fourier transforms of the target scattering centers. An AIM-9 missile is used to

illustrate how the partially correlated detection techniques and the pulse-to-pulse

correlation predictions can be used to determine the probability of detection.
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THE DETECTION AND CORRELATION

MODELING OF RAYLEIGH DISTRIBUTED

RADAR SIGNALS

L Introduction

1.1 Background

One of the major areas of interest in the development of military aircraft. sys-

tems is the radar power reflected or scattered from an aircraft when it is illuminated

by a radar. The measure of this scattered power is called the radar cross section

(RCS). The RCS of an aircraft is typically measured in 0.10 azimuth samples for

a given elevation angle. At radar frequencies greater than 8 Gllz the highly fluc-

tuating RCS may be under-sampled and an accurate characterization of the RCS

may not be achieved. Increasing the angular sampling rate will give a more detailed

characterization of the RCS; however, the cost required to upgrade the measurement

systems to achieve the smaller angular samples is high. The additional information

obtained from improved sampling may be of marginal value when compared to the

price required to upgrade the measurement system.

If we are interested in an exact deterministic characterization of the target's

RCS, then we would nominally need a sampling rate to support at least two samples

for every lobe. This criteria is impossible to achieve for complex targets due t.o the

highly fluctuating nature of the RCS pattern. The term complex refers to the type

of scattering expected from a target consisting of many scattering centers. In addi-

tion, due to the dynamic nature of the aircraft/radar engagement it is not, possible

t.o completely characterize the RCS deterministically for every possible observation
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angle. A complete characterization of the RCS would require both the azinuith and

elevation R.CS data in very small increments, i.e. on the order of tenths of a degree

for typical targets. Even if we did measure the RCS at all angles of interest, it would

not be feasible to handle this huge amount of data. and the data would most likely

be reduced or compressed via statistical processing techniques.

Given that a deterministic method for characterizing the RCS is not feasible

for the complex target, a statistical approach is considered. The key ingredients in

a statistical characterization is the RCS probability density function and the second

order moment of the R.CS. The second order nmoment describes how the ICS is

expected to fluctuate from a particular observation angle to another observation

angle. If we are interested in characterizing how the RCS fluctuations affect tlhe

probability of detection, then we need to know how the second order moment of I he

RCS affects the pulse-to-pulse correlation of the received return signal and how this

pulse-to-pulse correlation affects the probability of detection. The purpose of this

thesis is to investigate how the RCS fluctuations affect the pulse-to-pulse correlation

of the received signal. With this purpose in mind, two questions naturally arise. The

first is how important is the pulse-to-pulse correlation of the reflected radar signal

in determining the detection of the target? The second question is if the pulse-to-

pulse correlation is important, how do we determine the correlation properties for

a given target? The first question can be answered by quantifying how the pilse-

to-pulse correlation properties of the RCS affect target detectability. The second

question can be answered by developing analytic models which describe the target

fluctuations. Unfortunately. there has only been a. limited amount of work performed

on the correlated nature of radar return signals. Thus, before we can answer the

angular sampling question, we must develop a partially correlated radar detection

model and determine a method for predicting the signal correlation parameters.
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1.2 Goals

The primary goal of this thesis is to investigate the importance of the pulse-

to-pulse correlation of the radar returns on the probability of detection (1)P). The

second goal is to determine a method for predicting the pulse-to-pulse correlation

characteristic without explicitly making the required detailed measurements.

1.3 Approach

In order to understand how the pulse-to-pulse correlation affects the target

detectability, a detection model is developed that explicitly incorporates the effects

of pulse-to-pulse correlation. Chapter 2 introduces the radar receiver system 15used

to investigate the detection of partially correlated return signals. The radar receiver

model consists of a quadrature demodulator receiver, followed by a square law enve-

lope detector and a linear post-detection integrator. The Neyman-Pearson detection

criteria, is used to determine the probability of detection. Using the Nevman-Pearson

criteria, four techniques for calculating the probability of detection of a. target by a

pulsed search radar are introduced. I will then use these techni(ties to investigate

the importance of the pulse-to-pulse correlation of the received signal in determining

P)D of the target.

Once the importance of the pulse-to-pulse correlation on PI) is shown. it is

necessary to establish a method for predicting this correlation characteristic. (Chapt er

3 develops the analytic models to predict this pulse-to-pulse correlation. After the

analytic correlation models are developed, it will be possible to (letermine the target

detectabilit.\ .• ing the detection techniques of chapter 2. uIsing the result s from t lhe

general correlation models, we will generate the target aitocorrelation function of

two different distributions of the RCS scattering centers. The final section of this

chapter gives an empirical approach for estimating the puIlse-t o-pulse correlalion

using measured RCS data.
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Having an understanding of the importance of the affects of the pulse-to-pulse

correlation properties in chapter 3, I seek to develop a method to actually predict

these properties for a complex target. Chapter 4 illustrates how these properties can

be predicted for an AIM-9 missile. Finally, chapter 5 illustrates how tile correlation

models and the radar detection technique of chapter 2 are used to determine the

probability of detection for a given radar/aircraft engagement.
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I. Radar Detection Calculations

Developing a radar detection model is the first step required to investigate how

the target RCS fluctuations affect the detectability of a target. Pulsed radar systems

typically integrate tens to hundreds of pulses to improve the detection probability.

The process of summing all the radar return pulses for the purpose of improving

detection is called integration (17). For the pulsed radar system integrators we want

to know the importance of the pulse-to-pulse correlation in calculating PD.

This chapter introduces the radar receiver system and the Neyman-Pearson

detection criteria used to determine the probability of detection. Four techniques

for calculating the probability of detection by a pulsed search radar are then intro-

duced. The first technique is based on the early work of Peter Swerling (19). While

this technique does not incorporate the pulse-to-pulse correlation properties of the

radar return, it is included since it has become a virtual "standard" for calculating

radar detection ranges for high frequency radar systems. The Swerling results are

also useful as a baseline to compare with the other calculations. The second de-

tection calculation technique is also developed by Swerling (18). The pulse-to-pulse

correlation is modeled in the received signal covariance matrix and PD is determined

by the eigenvalues of this matrix. The signal covariance matrix and eigenvalues are

describe in section 2.3. Next, Irving Kanter's (14) technique for determining the

eigenvalues of the signal covariance matrix is introduced. Unfortunately, summation

errors associated with this technique limit the number of integrated pulses to less

than 30. The final detection technique, by Carl Helstrom (12), solves the summation

error problem through the use of contour and saddlepoint integration techniques.

2.1 Pulsed Radar Receiver Model

The radar receiver model consists of a quadrature demodulator receiver, fol-

lowed by a square law envelope detector and a linear post-detection integrator. A
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block diagram of the receiver structure is given in Fig 2.1. This receiver represents

the optimum detection receiver structure for small signal-to-noise ratio signals (5).

In-Phase Channel

Received G (v)Signal - -l(wO •Go(v)

Quadrature Channel

Figure 2.1. Radar Receiver Block Diagram

The radar receiver noise is assumed to be additive, zero mean Gaussian. We

will also assume that the envelope of each pulse out of the square law detector is

sampled at a time when the received signal is expected to peak in the absence of

noise. This sampling is then repeated for each of the N received pulses. Let the

detector output for each pulse be normalized by the receiver noise power, 2/32. The

normalized output from the integrators for N pulses is

-_:, 1 = j i 12 (2.1)

iý =1

where xi and yi are the in-phase and quadrature phase signals of the ith pulse through

the square law detectors.

The following notation will be used to defined the various quantities used in

this chapter. Hypothesis HI is used to represent the condition when the received

signal consists of the target return plus noise, and hypothesis II, represents the

condition where noise alone is present. G(v) is used to represent the integrator ou t put

probability density function (pdf) of the N received signals for the I11 hypothesis,

and G,(r,) represents the output for the H, hypothesis. Figire 2.2 illustrates a
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representative example of the integrator output pdf's G(v) and Go(v). Additionally,

0.6 Noise

pdf Go(v)

0.5

Signal + Noise

0.4 G(v)
Threshold

0.3

0.2

0.1

A

0 1 2 3 4 5 6 V
Vt

Figure 2.2. Detector Output pdf

we will define the per pulse ratio of signal power to average noise power by

2/327(2.2)

where Z is the mean value of the received signal through the detectors.

2.1.1 Neyman-Pearson Detection Criteria The Neyman-Pearson detection

criteria, which is most often used in radar, maximizes the detection probability for

a fixed probability of false alarm, PFA. Using the Neyman-Pearson criteria, the

detection threshold, (VT) is determined by the pdf of the noise only signal, G,(v).

and the desired PFA. The PFA is calculated by integrating Go(v) from V, to infinity.

Once the threshold has been determined, the probability of detection is calculated

by integrating the signal plus noise conditional pdf, G(v) fronm VT to infinity. These

quantities are explicitly given by:

P =A G,(v)dv (2.3)

2-3



PD J G(v)dv (2.4)

Solving for the threshold level, VT, is relatively easy if the system noise has a Gaussian

distribution. For this case PEA can easily be written as (14)

PFA e= C I:O n!- (2.5)

Determining the PD is difficult, since the pdf of the integrator output statistic, G(v),

depends on the fluctuating radar return signal and the pulse-to-pulse correlation

properties. These fluctuations and the pulse-to-pulse correlation properties in turn

depend on the target's RCS, the movement of the aircraft or radar within the N

pulse integration period, and the radar's pulse repetition frequency (prf). The first

attempt at calculating the PD is to simply assume a form for G(v), and model

the individual return pulses as being either completely correlated or completely un-

correlated. This assumption greatly simplifies the mathematics involved and allows

us to calculate PD in an easy manner.

2.2 Swerling Fluctuation Models

The first technique we will consider for calculating the PD was developed by

Peter Swerling (19). The resulting models developed using this technique are the

most commonly used to predict the target detection probability. Swerling (19) uses

two target model pdf's p(z) to describe the pulse signal fluctuations through the

square law detector. These two fluctuation models describe the signal amplitude

fluctuations and have been found to correspond to many types of targets. The

first pdf studied by Swerling is expressed by the Rayleigh distribution (negative-

exponential),

p(z) exp(-), z_> , (2.6)
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where z is the input signal power and z is the average signal power. The second

target pdf studied by Swerling is given as a chi-square distribution,

4z2
p(z) = -exp z>0. (2.7)

In addition to the two target pdf's, Swerling assumes two types of signal fluctuations

from one pulse to the next pulse. In the first case, the signal amplitude is assumed

to be completely correlated for each pulse within a single scan of the radar. For the

second case, the pulses are assumed to be un-correlated from pulse-to-pulse. The two

target fluctuation pdf's and the two pulse-to-pulse fluctuation models are combined

to yield the four well known Swerling fluctuation models used in detectability studies.

The four models are shown in Table 2.1.

Table 2.1. Swerling Fluctuation Models

Target pdf Scan-to-Scan Pulse-to-Pulse
Signal Fluctuations Signal Fluctuations

p(z) exp (--) SWi SW2

p(z) = -exp (--) SW3 SW4

2.2.1 Swerling Models Deciding which Swerling model to use in a detect abil-

ity study depends on the target's RCS scintillation characteristics, and on the pulse

repetition frequency (prf) of the radar. If the target, can be represented as a collec-

tion of many independently fluctuating reflectors of approximately equal magnitude,

then the pdf of the detector output is close to the Rayleigh pdf given in eqn 2.6. Ex-

perimentally it has been shown that if the number of reflectors is as small as four or

five the pdf can still be approximated by this pdf. Targets which can be represented
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as one large reflector with a number of smaller reflectors are more appropriately

modeled with the pdf in eqn 2.7 (8).

The choice of scan-to-scan or pulse-to-pulse fluctuations is determined by the

radar's prf and the RCS characteristics of the target. The scan-to-scan model applies

to jet aircraft or missiles where the phase scattering centers may be moving slowly

compared to the radar's prf. Pulse-to-pulse fluctuations would apply to propeller-

driven aircraft if the propellers contribute a large portion of the echoing area, or if

the engine components are within the radar's line-of-sight. Targets for which very

small changes in orientation would mean large changes in cross section, or targets

viewed by a radar with sufficiently low pulse repetition rates would also be modeled

with a pulse-to-pulse signal fluctuation model (8).

In the later investigation of the effects of partial pulse-to-pulse correlation

we are restricted to Rayleigh distributions for the square law detector output. z.

Therefore, we will only concentrate on the SWI and SW2 detection models. A

simple form for PD for N un-correlated return signals, SW2, is given by Irving

Kanter (14) as:

PD=exp (-l)= [IE T]n (2.8)

Similarly, for completely correlated return signals, Sl'l. Pr) is given by:

PD =-PEA + I-EN E ( \ •N- [ (2.9)1± Ny , I + k=N

The Swerling models are virtually a "standard" for radar detection-range cal-

culations (2) and provide a baseline to compare to the partially correlated detection

models. Difranco and Rubin (5) provide a good description on the use and selection

of the proper Swerling models for detectability studies.
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2.3 Partially Correlated Radar Pulses

The Swerling models are important since they are the most widely used mod-

els in radar detection studies; however, these four models consider only the cases

where the signal is either completely correlated (SW1 and SW3) or completely un-

correlated (SW2 and SW4) from pulse-to-pulse. Continuing his early development.

Swerling (18) extended his detection theory to the more general case of partially

correlated radar return pulses. Recall that the probability of detection, PD, and

probability false alarm, PFA, are given by

PFA = G(v) _, = e-iv- Y, T
IVn=O ??,I

PD = j G(v)dv,

and

?- 2 _ zi, Zi -= X jyi + 2,
2/32 i=1

where xi and y, are the in-phase and quadrature phase of the received signal and N

is the number of integrated pulses. These components are assumed to be Gaussian

random variables with zero mean. In addition, zi is assumed to be statistically

ii,dependent of the receiver noise. For the signal plus noise case, hypothesis H1,

calculation of PD is difficult, since the statistics of v depends on the fluctuating radar

return signal and on the pulse-to-pulse correlation properties. These fluctuations

and l ulse-to-pulse correlation properties in turn depend on the radar's prf and the

movement of the aircraft or radar within the N pulse integration period.

To calculate PI), we begin by manipulating (6(v) into a form which can be easily

integrated by taking the Laplace transform of (;(?,) anTd simplifying the resulting

equation. PD can then be determined by taking the inverse Laplace transform of
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this result and integrating G(v) from VT to infinity. Since the steps involved in

simplifying the Laplace transform of G(v) are numerous, only the results will be

given here. The complete derivation which closely follows Swerling's paper (18) is

given in Appendix A.

The Laplace transform, L(s), of G(v) is given as

L (S) j e"'GOO&d. (2.10)

After much manipulation, the simplified expression for the Laplace transform of (;()

is given as
N

I 1 + s(1 + \Ai)' (2.11)

where A• is the ith eigenvalue of the signal covariance matrix C. The individual

elements of the signal covariance matrix are given as

ci, 3 =E[ziz1 ], i= 1... N, j I ... N, (2.12)

where E[] is the expectation operator. As stated earlier, the pulse-to-pulse corre-

lation is primarily due changes in the target RCS within the N pulse integration

period. All of the pulse-to-pulse correlation information is contained by eqn 2.12

and the resulting covariance matrix, C.

PD is then determined by taking the inverse Laplace transform of eqn 2.11 and

integrating the resultant pdf from VT to infinity. The inverse Laplace transform of

eqn 2.11 gives the following simplified form for G(v):

N N I+ \Ak -,exp[ I

E(,,) 1A (2.13)

k-n
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Integrating this pdf from Vr to infinity yields PD, which after simplification can be

written as:
E ~H R 1+XAk'\ ____

P = 1+exp (2.141)
?1=1 1 +- xA,/ 1 + -A "

k$n

Equation 2.14 gives the desired PD for a Rayleigh distributed signal, assuming the

eigenvalues of the signal covariance matrix are known. While this technique is rela-

tively straight forward, it is difficult to use because of the need to determine the N

eigenvalues of a N by N signal covariance matrix. The difficulty of computing the

covariance matrix eigenvalues can be overcome by a technique developed by Irving

Kanter (14) discussed in the next section.

2.4 Signal Covariance Matrix and Eigcnvalucs

The third technique for calculating the probability of detection of Rayleigh

distributed radar returns is given by Irving Kanter (14). Ranter also addresses

how to calculate the inverse Laplace transform of L(s), and how to determine the

eigenvalues of the covariance matrix. An alternative technique for calculating L(s)

is used, but the same results as determined by Swerling in eqn 2.11 are obtained.

The technique of computing the signal covariance matrix eigenvalues introduced by

Kanter allows us to easily determine PD.

This section closely follows the work of Kanter (14) and shows how the covari-

ance matrix eigenvalues are determined. We begin by first considering the nature of

the received signal covariance matrix. If the received radar pulses arise from a sta-

tionary process, then the signal covariance matrix. C, will be a symmetric Toeplitz

matrix with N distinct elements (i4). With this observation in mind, we will assume

that the received signal may be described by a first order Markov process. The jus-

tification for this assumption is based on target fluctuation characteristics observed

by Barton (1), and on flight test. measurements conducted by Edrington(7) which

showed the detector output to be exponentially correlated for three different, types
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of aircraft. Using this assumption, PD is determined from the eigenvalues of the

signal covariance matrix which is characterized by a single correlation parameter p.

Using these observations, the ck, element of the covariance matrix, for a train of N

uniformly spaced pulses, is given by

_kn I plk-nj 0 < p • 1, (2.15)

and the resulting signal covariance matrix is

1 p ... pN-1

p 1 p "

C = P(2.16)
P

PN-1 • I

The eigenvalues of C provide a nontrivial solution to the matrix equation

[C- A,] U = 0 (2.17)

where I is an N by N identity matrix and U is a N dimensional vector with individual

elements Uo,'", UN-1. In addition, the sum of the eigenvalues equals the trace of C

giving the relation
N

-A, = N, (2.18)

which will be used later on.

As an example, consider the special case where the interpulse spacing is so large

that the correlation of non-consecutive pulses may be neglected. For this case. the

signal covariance matrix is tridiagonal and eqn 2.17 is equivalent to a homogeneous

boundary value problem (14), which can be expressed as a set, of homogeneous second(
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order difference equations of the form

pu,,_n + (1 - A)u, + P,,n+, = 0, 1,... N (2.19)

with the homogeneous boundary conditions,

Uo = UN+l = 0. (2.20)

Since eqn 2.19 is linear and has constant coefficients, there are two solutions of the

form

Un= -', (2.21)

where

A - (A -1)' 9-2"± p -Y~/ 1 (2.22)
2p 2

The condition I (A - 1)1 2p 1> 1 implies either A > 1 + 2p or A < 1 - 2p, each of

which leads to a contradiction of eqn 2.18. Thus, we must have I (A - 1)/2p j< 1,

and -y can be expressed as -y = c±+j. Using the identity, c:'j° = cos 0 ± j sin 0, the

real part of eqn 2.22 canl then be expressed as:

cos 0 - I (2.23)2p

The general solution to eqn 2.19 in terms of c~j°O can be written as

Tin = K1 cos nO + K2 sill nO (2.24)

Since the boundary condition u0 = 0 must be satisfied, K, must equal zero. The

second boundary, IIN+l = 0, allows us to solve the transcendental equation 2.24 for

0. Rewriting eqn 2.24 for n = N + 1 gives

"11,N+l = K.2 sin(N + 1)0 = 0. (2.25)
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Equation 2.25 then yields the distinct 0,, values:

0- N= r n = 1,--.,N (2.26)

Note that the 0,'s are equally spaced in the open interval (0, 7r). Equation 2.23 Yields

the N signal covariance matrix eigenvalues

1- 2p <A, =lI+ 2p cos 0,,<I+ 2p, n = 1,--.N. (2.27)

The following example of solving for the probability of detection using this

technique, will help to clarify the steps involved. Consider the case of two integrated

pulses. The covariance matrix is given as

[ = ] (2.28)

From eqn 2.26, 01 = 7r/3 and 02 = 27r/3. The eigenvalues are determined from eqn

2.27 and are given as

A = I ± p. (2.29)

The probability of detection, PD, from our earlier results eqn 2.14, is given as

PD 2 -1" 1± y] exp ± (2.30)
n=k=1 I - I p

k~e n

where VT is the signal threshold required for a given PFA and \ is the per pulse

ratio of signal power to average noise power, and A1,2  I + p. Substituting in the

eigenvalues and simplifying. results in the PD given by

PD =exp{(1j+ )(pT) 2 }* [I+ksinh PY )2 + coshS (+X (T1 2( + X)2-(pk)I
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This result agrees with the value calculated by Schwartz (16) for two iilt egrat ed

pulses. For the case where the correlation of non-consecutive pulses nay not be

ignored, a similar technique of formulating and solving an equivalent homogencous

boundary value problem may be applied. Since this is the case more frequently

encountered, the derivation given in Kanter's paper (14) is included in Appendix B.

Evaluating the PD by this technique is difficult. when N > :30, since the first

terms in the series of eqn 2.14 are large when the eigenvalues are close together in

magnitude, which will be the case when N is large. As shown in section 2.6.5. lhe

summation errors associated with this technique become too large, and an alternative

technique for determining PD is required.

2.5 Calcilating PD Using Conotor ln~tqration

The final technique for determining the PD of Rayleigh (listribiuteld signals is

based on the work of Carl Ilelstrom (12). The difficulty of the summation errors

of Kanter's technique can be avoided through the use of saddle-point Integration

and it's associated saddlepoint approximations. The use of contour integration to

determine PD is also introduced in this section. The contour integration technique

gives the same results for PI) given earlier: however, t lie notation is slight l difFerent.

Before we introduce the saddlepoint integration techniques, we will first show

how PD can also be determined by contour integration. Recall from our earlier results

that the Laplace transform of the detector output is given by

N\ I
L (s) = fi(23

( =1 I + s(l + \AX) (2.31)

Equration 2.31 and the resultant derivation can be sinipified bv defining ()k as:

Ik I I + \Ak (2.32)
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Rewriting the Laplace transform of G(v), eqn 2.31, in terms of a, gives:

N 1 (2.33)
L(s) =-[ 1 + okS

As shown earlier, PD is given as the integral of G(v) from the threshold to

infinity. In the two previous techniques, G(v) was determined from the inverse

Laplace transform of L(s). PD was then determined by integration of G(v) over the

appropriate limits. An alternative technique for calculating PD is to transform the

integration limits to the s-plane and perform the appropriate contour integration.

This is the technique used by Helstrom (12). To use this technique, we begin with

the moment-generating function, h(s), of the statistic v. The moment-generating

function is given by:

h(s) = E[•v [D(s)]-, (2.34)

where
N

D(s) =l(1 + OkS). (2.35)

The cumulative distribution function, cdf, is the integral of G(v) from 0 to VT.,

which is equal to I - PD. The cdf is generated from the moment generating function

h(s) by the inverse Laplace transform of eqn 2.33 and is given by

q-(/VT) 1-PD = (.j f (,s)- h(T,)C T-d C > 0, (2.:36)

with integration along a straight vertical contour in the right half-plane. The comple-

mentary cumulative distribution function, ccdf, and the PD are given as the integral

of G(v) from VT to infinity. The ccdf is given by

q+(Vr) = PI-= (-.h ,S ,< o, (2.3<7)

J- 2- j2(
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with integration in the portion of the converging sl ri p of I lIe La place I ransfori h(.i)

in the left, half-plane. The A poles of h(,s) lie at the points .-. -- - ak( c > -k.

where il is the largest of the scaled eigenvalues of the C' matrix. The residue tleorcei

is then used to evaluate the t• (10). Ihe resultant PI is given bY

N N 0 n - I-lýPI) = q+(Ii',) = E I- I - -] exp) . (2.38)
k=l 1-1t ()k/1

n$ k

This technique of deterntining the P[) gives the same results developed bY lKan-

ter (14-) and Swerling (18), and it has the same limitations they encountere(d. lRecall.

the first terilrs in the series are large when the signal covariance matrix eige'nvalies

are of approximately the same magnitulide. The( ill behavior of the summation errors

in eqn 2.38 can be avoilded by evaluating eln's 2.36 arid 2.37 using saddlepoint inte-

gration and the corresponding saddlepoint approximations Int rouce(d by Ilels roii

(10).

2.5. 1 Saddlcpoint Inlcgralion of q+(Vr) The saddlepoint integration tech-

nique is described in detail in references (9),( 10), and ( 1 ). 'T'he(, general approach to

this technique starts with the integrals of the type described in cln's 2.36 and 2.37

which have the form

q ( =C+4,. (s) (I (2.39)

where the "phase term i(n ) is given by the moment -genereit ing function, Ci ns 2.3.1

and 2.35, which when simplified results in

S V,., - E InI(l + ok.I) - l 4(T.'). (2.10)
k=l

PtI) is coomputed by deforming the ('onto<ir of integration onto a pat i pass•isg through

lhe saddllepoiint .s, or .+,,+ of the in! egrand of eitn 2.39 oit lie the .H s-axis. The saddlie-
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points are roots of the equation

N

VV(S) = VT- ak(l+aks)-' -s-' =0, (2.41)
k=1
- + -1s=ss+, -a 1 <s- <0, s+ >0.

The roots of eqn 2.41 are computed using Newton's method where each trial value

of s' is replaced by
" V(s') (2.42)

with
N

4D"(s) = •a(1 + akS)-2 + s-2. (2.43)
k=1

The above procedure determines the saddlepoint s+ or s-. The cdf and ccdf are

determined by the saddlepoint approximation:

q±(VT) ; [27rV"(Vs 4)j-½ exp(F(sl)) (2.44)

The probability of detection can be determined from either the cdf or the ccdf, and

is given as
PD = q+(VT) , [2rw"(s-)]-½exp(2(s)). (2.45)

PD = 1 - q_(VT) 1- -[2r"(s+)]-½exp(F(s+)). (2.46)

When N > 1 these approximations are adequate.

Now that we have a technique to determine PD for correlated Rayleigh return

signals, the next step is to use these models to show how PD is determined for differ-

ent covariance matrixes. In-addition, the next section will also show the summation

error problem encountered by Irving Kanter.
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2.6 Detection Calculations

This section discusses the actual calculation of PD using the Kanter and Hel-

strom techniques described earlier. The detection calculation technique of Kanter

(14) was implemented first. This method yields acceptable results for up to N = 30

pulses, and for correlation coefficients p < 0.9. For larger number of pulses and for

higher correlation coefficients, the summation errors are too large. The technique

of Helstrom (12) was implemented next to overcome this limitation. This technique

yields acceptable results for all cases considered. For each technique the algorithms

were written in FORTRAN 77 source code. The steps involved for calculating the

probability of detection are:

Determine the detection threshold, VT.

Calculate the covariance matrix, C, for N pulses.

Calculate the C matrix eigenvalues, A2.

Determine the probability of detection using eqn 2.14 or 2.45.

2.6.1 Detection Threshold VT Recall, the detection threshold, VT, is the re-

quired noise signal threshold to a achieve a given PFA. Unless otherwise specified

this PFA was set to 106. Since the threshold is independent of the target signal, the

threshold values are calculated in advance and stored in a data file. The following

technique provides an effective way of calculating the threshold. An initial estimate

of the threshold is given by (6),

VT , VN'K-'(PFA) + N, (2.47)

where ý-'(PFA) is a constant found on page 368 of Difranco and R{ubin (6). This

approximation is valid for 102 <_ PFA < 10"5 (6). A more accurate threshold is

then calculated using our earlier results for PEA
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N- I/• 1.4,

PEA = e-VT E vT (2.48)
n=O

where VT is varied and the calculated PFA is compared to the desired value. When

the difference is within an allowable limit, the threshold value, VT, is written to the

appropriate data file.

2.6.2 Covariance Matrix C With the appropriate value of VT calculated for

N pulses, the next step is calculate the covariance matrix. For the initial evaluation

of this technique, an exponential correlation model described by Kanter (14) was

used. For this case the received signal consists of a train of N pulses with uniform

spacing between the individual pulses. The Ckn value of the covariance matrix are

given as

Ckn -Pk-l (2.49)

p p2  p N-1

p 1 p ... pN-2

C= (2.50)

PN-2 P
pN- •*• p 1 p

pN-1 . p2 p 1

2.6.3 Determination of C Eigenvalues Ai The eigenvalues of the C matrix

were determined using the IMSL DEVCSF FORTRAN subroutine (13). This sub-

routine determines the double precision eigenvalues for a real symmetric matrix using

the method mentioned below.

Routine DEVCSF computes the eigenvalues and eigenvectors of a, real
symmetric matrix as follows: first, accumulating orthogonal similarity
transformations are used to reduce the matrix to an equivalent sym-
metric tridiagonal matrix; second, the implicit QL algorithm is used to
compute the eigenvalues and eigenvectors of this tridiagonal matrix. The
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eigenvectors are normalized such that the oo-norm of each eigenvector is
one (13).

The calculated eigenvalues were then compared to the eigenvalues calculated

using Kanter's (14) technique. For the cases considered, the two techniques produced

the same results.

2.6.4 Calculation of PD The last step is to determine the PD curves for

various signal-to-noise ratios. Recall our earlier results for P,) was given as

PD [e V (2.51)n=1 k=, [1-±•-~x ±Aj•
k~fn

where X is the signal-to-noise ratio.

2.6.5 Kanter Results The above technique yields results which agree with the

values calculated by Kanter (14). Unfortunately, as p approaches 1. or for N > 30

the summation errors become too large and the results become unacceptable for

small signal-to-noise ratios. An illustration of these results are shown in Fig 2.3.

For p = 0.8 and p = 0.9, the summation error is too large. The magnitude of

this error increases as the number of integrated pulses increases and/or as the corre-

lation coefficient, p increases. Since this technique limits the number of pulses to be

less than 30, this technique was abandoned for the Ilelstrom saddlepoint integration

technique described in the next. section.

2.6.6 Saddlepoint Integration Method The lielstrom technique is similar to

the Kanter technique. The major difference is that. saddlepoint integration tech-

niques are utilized to perform the calculation of PI) (12). This integration technique

avoids summation errors encountered with the Kanter technique. The algorithm

developed in the previous section was used to determine the detection threshold V T.

The covariance matrix eigenvalues were also calculated by the technique described in
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Figure 2.3. Kanter's Method for N =30 p)ulses integrated

the previous section. A detailed discussion of the saddlepoint integration technique

is given in chapter 2.

Recall the saddlepoints are roots of eqn 2.52 and are used to determine PD.

NV'(S) = V/: - E ak(1 + akS)-' - S-' = 0, (2.52)
k=1

-•.S + -1 •
S 0,-sQ, Ik <s 0 <O, <0 o

The saddlepoints are computed by Newton's method where each trial value of .S' is

replaced by

.s -s(2.53)
•"( s')

with
N

0 + (1k)- + - (2. 51)
k=1
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The above procedure determines the ,addlepoint. The cdf and cc(df are determined

using the saddlepoint approximation

q+ ( VT) _- [27r¢,"(,,%•,)]-5exp(¢(,%s•)). (2..5,)

The probability of detection can be determined from either the cdf or the ccdf by:

PD q+(Vr) z [2r4/"(s2)]5 exp(D(-s)). (2.56)

PD = 1 - q_(l':) _ 1 - [2r-"(s+)] 5exp((.s+)). (2.57)

A plot of PD using this technique for 30 pulses is shown in figure 2.4. As the

figures demonstrate, the summation error associated with the earlier technique is

avoided. Figure 2.5 shows the PD curve for 150 pulses integrated. Again there are

no noticeable anomalies associated with this technique even for highly correlated

pulses.

Some observations about the results shown in Fig's 2.4 and 2.5 are useful.

Smaller values of p correspond to signals which are less correlated, i.e. niore fluc-

tuating from pulse-to-pulse. For PD < 0.4 the degree of correlation makes little

difference, the more fluctuating signals are almost identical to the less fluctuating

signals. Note that the p 0.4 is close to the p = 0.6 curve, while the p = 0.9 is

more spread out than p = 0.95. Having the curves that correspond to the higher

fluctuating targets to the left of the less fluctuating curves imp:-•s the fluctuating

targets require a lower signal-to-noise ratio to achieve a given PD. Figure 2.4 shows

the importance of the correlation properties in determining PD. For a PD of 0.95,

the p = 0.95 correlation coefficient requires an additional signal-to-noise of 1.7 dB

to achieve the same PD as the p = 0.4 correlation coefficient.

The preceding analysis calculates PD using an exponential correlation param-

eter. Recall that the exponential correlation parameter allows us to compute the
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Figure 2.4. Saddlepoint, Integration for 30 radlar pulses
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Figtire 2.5. Saddlepoint. Integration for 150 rada~r pulises
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signal autocovariance matrix eigenvalues in a convenient manner. If the number of

integrated pulses is less than 150 then the eigenvalues can also be determined by the

IMSL fortran subroutine DEVCSF described in section 2.6.3. 1 used this subrouti e

to determine the covariance matrix eigenvalues with individual elements describled

by a (sin x/x)2 correlation parameter. PD was then calculated with these eigenval-

ues and the results we- compared to the PD calculated with exponential parameter

eigenvalues. The two different parameters yielded approximately the same P)D for

all of the cases considered. This result indicates that PD is primarily determined by

how fast the correlation parameter first approaches zero and not on the behavior of

the correlation parameter beyond this zero value.

2.6.7 Summary In this chapter we have introduced several techniques for

determining the probability of detection of Rayleigh distributed radar returns. The

original work of Peter Swerling (18) provides the theoretical background for deter-

mining PD of partially correlated signals but does not provide an effective techuique

for calculating the required covariance matrix eigenvalues. A technique for deter-

mining the eigenvalues is given by Irving Kanter (14); however, summation errors

limit the number of integrated pulses to 30. This limitation is corrected through the

use of saddlepoint integration techniques introduced by Carl Helstroni (10). These

models were then used to illustrate the importance of the correlation parameter p

in determining t1 _. For the all the cases considered and for IP/0 > 0..4, the more

fluctuating targets required a lower signal-to-noise ratio to achieve the same t1  . In

addition, the results of this chapter shows that it is not possible to accurately deter.

mine ID without considering the pulse-to-pulse correlation of the individual radar

returns.
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III. Determination of the Target Autocovariance

The pulse detection methods developed in chapter 2 require the pulse-to-pulse

correlation of the received signal in order to generate the signal autocovariance ma-

trix. Recall that the de-correlation of the signal may be caused by, among others. the

target's rotation relative to the radar's line-of-sight or by changes in the radar fre-

quency. The degree of correlation of the signal amplitude from one observation to lhe

next will determine the detection probability (1). Several pdf's have been proposed

to describe target fluctuation statistics (2). Among these are the chi-square family,

the Rice family, the log-normal family, the Swerling models, and the \Weinstock dis-

tributions. The Swerling's techniques described in chapter 2 (19) using completely

correlated or comp,,.:w, y un-correlated pulse-to-pulse signals can be applied to all

the above modeIL drnd for arbitrary pdf's, but extensive numerical calculations have

been made only for the original Swerling pdf models. In addition, these calculations

do no. account for the pulse-to-pulse correlation of the received signal (2).

This chapter develops the analytic models to predict the autocovariance matrix

of the received signal. Once the analytic models are developed, it, will be possible

to determine PD using the results from the models and the prediction techniques of

chapter 2. The first section develops a method of determining the signal autocorre-

lation function, and is based on the preliminary work of Byron Welsh. 0.al. (20).

Using the results from this model, we will generate the autocorrelation function for

two different types of complex scattering targets. The final section of this chaplter

gives an empirical approach for estimating the autocovariance matrix.

3. 1 Autocovariancc of a Cornplex Tareqt

The following results closely follow the preliminary work performed by lBYron

Welsh. rt.al. (20) on RCS correlation modeling. Their work will permit us to develop

the pulse-to-pulse autocorrelation function for an arbitrary distribution of scattering
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centers. A spatial distribution of scatterers can be used to reproduce the scatter-

ing statistics expected from a complex target, where the term complex refers to the

type of scattering expected from a target consisting of many scattering centers. The

spatial extent of the scattering centers is assumed to be large compared to the wave-

length of the incident electro-magnetic field. Since the spatial extent is large. the

RCS aspect angle pattern will be highly fluctuating and the RCS statistics call be

determined from the distribution of the scattering centers. In addition, the use of

spatially distributed scatterers will allow us calculate the target autocovariance in a

relatively simple manner. We will consider two spatial distribution of scatterers for

this analysis. The first distribution is for a collection of scatterers where the indi-

vidual scatterers have a Gaussian distribution about a set of fixed locations. This

distribution requires detailed information about the target scattering centers and

should accurately predict the target autocorrelation function. The second distribu-

tion considered is where the scattering centers are uniformly distribulion within a.

rectangular box. This distribution was chosen since only the maximum target, di-

mensions are required. These maximum dimensions correspond to the dimensions

of the box. Since only the maximum dimensions are required, it is relatively easy to

predict the autocovariance of the target using this distribution. Remember that we

would like to predict the autocovariance using the simplest, model possible. W¥e will

then compare the uniform distribution predictions to the point, source distributions.

If the two prediction methods agree. we will then be able to use the much simpler

uniform distribution technique to calculate the target autocovariance.

The target and observer geometry used throughout. this section is illustrated

in Fig 3.1. The following definitions will be used through this section to describe the

quantities of interest:

,i =vector position of the ith point scatterer

_h(i:) =scaler backscattered field from the ith point scatterer for a unit, a.nhl)lilude

incident field
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Figure 3.1. Target/Observer Geometry

unit vector pointing in the direction of the observation point,

y(ý) = complex amplitude of the total scattered E field,

A = wavelength of the incident and scattered field.

The expression for the complex amplitude of the scattered field is given as

N 74r~
y (ý) = - 4- V- - . ) , (3.1)

i=1

where N is the number of scatterers in the observation direction ?. The power of

the scatterer field in the , direction is proportional to the squared magnitude of the

scattered field:

IYý12N N 47r

) = 2 _hi ) exp j-x [V . (Fi - Fi,)] . (3.2)
i= 1 3 ex I
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The autocorrelation of a is required to calculate P,) and is giveCI as

R•(, ,+2) =E[,7(ýI,)•(ý-)] 13

E[I y(I) H W 2 ) 2'

where R,(rIJ2) is the autocorrelation function and E[ ] is the expected value

operator. As will be discussed later, the individual elenents of the signal covariance

matrix C are generated from this autocovariance function.

3.1.1 Assumptions The following assumptions are made to simplify the anal-

ysis.

b() = -b.

I LI is independent of arg[b,].

arg[b,] is uniformly distributed over the interval [0, 27r].

bi and 7i are independent.

3.1.2 Implications The assumptions listed in the preceding section results in

the following implications:

E[b] = 0, (3.4)

:[L)2] = 0, ( .

E~zh21 = = (3',

0 i i'

('sing the above assumptions, the expected value of a(t) is given by

-[a(r)] = ,\,, (3.7)
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which agrees with the value determined by Crispen (3), for Ithe incoherent addition

of scatterers. Using the above assumptions, the aul ocorrelat lio function can be

expressed as

R,( 1 , .2 ) =E [ : -- ,b b ,b , x exp {) +-'- (, - , r-,.(r -

1i-- i'= 1 n 'l = 1

Since bi and i• are independent, the quantity E[bjihL,,),,] can be considered sepa-

rately. Using eqn's 3.4 thru 3.6, it is easy to show:

E[I _hi 141 1 - 7- 1, = n'

a 4  i - i' and n n' and i n n

a 4  i - n' and n 1 i' and 1'(

0 otherwise

Using eqn 3.8, the autocorrelation function can be written as:

R•,(+,,J2) =NE[I hi 14] + N 2 0&4 - 2Na 4

l 4 1(3.9)

Equation 3.9 can be further simplified by recognizing that the expected value

in the fourth term can be written in terms of the characteristic function of ri. The

characteristic function for a random process i is given as

Ml(c) = E[dWý-], (3.10)

where & is a vector of the same dimension as it (4). The characteristic function

can also be written in terms of an inverse Fourier transform operation. If ?7 is of

dimension n, we can write the characteristic function as

M (-=(2, 5)2t'n-'[,,,(27 )],
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where p,( d) is the probability density function (pdf) of W7 and F-'- is the n-dimensional

inverse Fourier transform operator. The Fourier transform operators are defined as:

F. [p (,(d)c-2")da (3.12)

F,;1 (p,(ij)] =Jp,,(iU)c(27Zdu• (3.13)

Using the results given in equations 3.12 and 3.13 the expected value in the fourth

term of eqn 3.9 can be written as

E exp T [( - "2)(r r F7 1[F4-'[. 4(.-[ I ')] = , =

where p•(r-) is the pdf of r, P "I) is the conditional pdf of i7 given r,,. The

directional change in the observation point (Ar) is defined by r - - r2. Using

the above results eqn 3.9 can be rewritten as

R,(Ar) = NEtl b j + N2 a' - 2Na 4

N N

a4- F" [ F7 I [Pa, (F, I )(] - .F(3.15)i=1 i=1 ,[ , plr 15 )p,, ),: ,

Assuming the real and imaginary of bi are Gaussian implies that the is Rayleigh

distributed, which is consistent with an 2arlier assumption concerning the signal pdf

given in chapter 2. The first term in eqn 3.15 can be shown to be

E[I b, I4] -= 2a4. (3.16)

(Tsing this assumption, eqn 3.15 can now be written as

R,(A,)= N F,[ [+[pi,(• )],,('(,)] .I i (3.17)
ii1 i)=l
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If the position of the ith scatterer is independent of the position of the i' scatterer,

then eqn 3.17 is given as

R, (A,) = N 2a4 + a 4 Z

N N+.= N 2a4 +t a 4 FN-I =F [Pr(i)l=2 . (3.18)

The autocovariance is determined by subtracting the mean squared value of 0'

from the autocorrelation function (4). Thus, the autocovariance can be written as:

N 
ý2

K,( Ar) = a4 F.-F[Pri)I , (3.19)

This general model allows us to calculate the signal autocovariance for any

given scattering center distribution, pr(s). The autocovariance is then used to deter-

mine PD using the radar detection model of chapter 2. The next step is to calculate

the signal autocovariance for a given distribution of scattering centers. The first dis-

tribution considered is where the individual scatterers have a Gaussian distribution

about a collection of fixed points in the xy plane. This distribution is chosen since

the location and magnitude of the scattering centers can be easily determined from

a two dimensional radar image of the target. The second distribution considered is a

uniform distribution of scattering centers in a rectangular area of the xy plane. The

rectangular scattering center distribution is chosen since the only knowledge required

for the calculation of the autocovariance function are the r and y dimensions of the

target.

3.1.3 Point Source Scattering Centers The first autocorrelation function we

will generate using the above model is for a collection of scattering centers where

each scattering center has a Gaussian distribution about a fixed location in the .ry

plane. This distribution is chosen since it requires the most information about the
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target's RCS. Specifically, we require the position and magnitude of each scattering

center. The pdf of the position of each scatterer is described by:

Pi, 2(X,°' exp - Y (:3.20)

where ax and ao are the standard deviations of the ith scattering center about the

means xi and yi. The inverse Fourier transform of eqn 3.20 is given by

Fý-j[p'(x,y)] = 2  Iexp{-v (~i2 Y ij

x exp(j27r(xwx + ywy))dxdy (3.21)

where w, and wy are the x and y directed components of L. Carrying out the

integration of eqn 3.21 gives

Fý_ [pr(xi,y9)] = -exp o - exp {j27r [(wxxi+ wyi]}. (:3.22)7r 2 "

Substituting eqn 3.21 into eqn 3.18 gives

N ri 2A20,2+ 2A20 '2 t(j4 + Aj2
R,(Ar) = N2(A4 + -- exp -exp 1(AXrA + AY Y

(3.23)

Subtracting the mean squared value then gives the autocovariance

N Oi A202 +2 A2y j 2

I,(Ar) -- exp -2 X A2 2 Y' expi•, [A~xi+Ayi± (3.24)

The signal covariance matrix can be calculated from the autocovariance. PD is then

calculated using the detection model developed in chapter 2. Before we proceed with

the PD calculations, we will also determine the autocovariance function for a uniform

distribution of scattering centers.
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3.1.4 Uniform Distribution of Scattering Centers The second scatterer dis-

tribution considered is where the N point scatterers are uniformly distributed within

a rectangular area of width L, and length L.. This distribution was chosen since

it requires the least amount of target information. The pdf for this distribution is

easily written as

p() LL-rect x)rect L (3.25)

where

I Ix < I
rect(x) =2 (3.26)

0 elsewhere

Application of the the two-dimensional Fourier transform and simplifications, results

in the following autocorrelation function

R, (A,) =N a4 11 + { sinic ( _~x ) sinc (2 ~~}j(3.27)

where the sinc(u) = sin(u7r)/uir. The corresponding autocovariance function is given

by:

K,(Ar)= N {sinc (LA 1 ) siuc (9LA )1 (3.28)

The point source and uniform distribution models gives us two methods of de-

termining the signal autocovariance. The point source distribution requires the most,

information about the target and is therefore more difficult to implement than the

uniform distribution of scatterers. However, the point, source distribution will give

an accurate prediction of the autocovariance. The uniform distribution is chosen be-

cause only the maximum dimension of the target are required and the autocovariance

is therefore easily calculated. Finally, we are interested in comparing the predicted

autocovariance, K,(Ar) to an empirically derived autocovariance, k/,( k). The two

covariance prediction models can then be compared to the empirical estimate to see

how different target, shapes affect the autocovariance.
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3.2 Empirical Estimate of the Autocorrelation Function

An empirical estimate of the signal autocovariance function can be obtained

from the measured RCS data. This method is useful if the target RCS pattern is

known. The empirical results will then be compared to the autocovariance predic-

tions previously developed. The following empirical estimate of the autocorrelation

function is given by Levanon(15) and Crispen (3)

1 N-i-k

R,[kk Zký,•+k, 0 < k < N- 1, (3.29)
k=O

were Zk is a sequence of target RCS values (Mi2 ). The estimate of the expected value

of z is
1 N-1

Z Zk, (3.30)
Nk=0

and the autocovariance estimate is determined by

K, = R,[[k] - ý2. (3.31)

3.3 Summary

This chapter has shown how the autocorrelation of the RCS can be predicted

for any distribution of scattering centers. The autocovariance was determined for two

types of distributions. The uniform distribution is the easiest method to implement

since it only requires the maximum dimensions of the the target. The point source

distribution requires the location and magnitude of the individual scattering centers

and is more difficult to implement but should provide a more accurate estimate of

the autocorrelation. Finally, we introduced a method for empirically estimating the

autocovariance using the measured RCS data. The next chapter compares these two

prediction techniques to the empirical estimate of the autocorrelation for a particular

complex target.
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IV. Target Model

In chapter 2 we showed the importance of the correlation parameters in d(eter-

mining PD of a target. In chapter 3 we developed a technique to describe the signal

correlation properties based on the target's scattering center distributions. We also

introduced an empirical method of estimating the autocovariance using measured

RCS data. Our goal is to model the autocovariance of the target without, having

to revert to the detailed angular sampling of two samples per RCS lobe. With this

goal in mind, the next step is investigate how well the autocovariance prediction

techniques estimate the autocovariance of the target.

This chapter illustrates how to use the uniform and point source scattering

center distribution predictions to calculate the autocovariance of a complex target.

The autocovariance is also empirically estimated from the measured RCS data. This

estimate is then compared to the two predicted autocovariances discussed in chapter

3. This comparison is made using the RCS from the AIM-9 missile.

4. 1 A IM-9 Missile

An AIM-9 missile model is used to show how the autocovariance varies with

changes in the observation angle. The 1/3.72 scale model is shown in Figure 4.1. The

model was measured at. Ohio State Iniversity's compact radar range at 36 Gllz. The

target was measured at a zero degree elevation angle, and in azimuth at every 0.15

degrees from 0 to 180 degrees. The missile was chosen because the spatial extent of

the scattering centers are large in the side-on dimension (95 wavelengths), and small

in the nose-on dimension (11 wavelengths). The significance of the spatial extent will

be shown later. The missile was also chosen since it is a relatively coml)lex target.

The 0 to 180 degrees azimuth RCS plot, of the missile at zero degrees elevation

is given in Figure 4.2. Note that zero degrees corresponds to the nose-on observation

angle, and 90 degrees is the side-on observation angle. As seen from tle plot. the
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. .. .. 30.28 .
3.5,

Side View Front View

Figure 4.1. AIM-9 Missile

widest lobe width occurs at the nose on aspect angles. The lobes widths become

increasingly narrow as the observation angle approaches broadside. The RCS pattern

of the target can be more easily seen if the azimuth scale is expanded. A 30 to 60

degrees azimuth plot of the missile is shown in Figure 4.3. Before we proceed further,

20

10 .. .-

0

, -10
-20

S-30

-40 -

- 50 . .. . ..

-6o0.. . ... F

-70
0 20 40 60 80 100 120 140 160 180

Incidence angle (deg)

Figure 4.2. 36 GHz, 0' - 1800 Missle RCS Azimuth Plot,

a brief discussion on the RCS lobing structure will help explain the autocovariance

plots shown at the end of this chapter.
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Figure 4.3. 36 GHz, 30' - 600 Missle RCS Azimuth Plot

The RCS lobes widths of a complex target, can be estimated from our earlier

results of chapter 3. Recall the results of chapter 3 showed the target RCS is given

as
a(,•-) = 2e p 4 7 ) (4.1)

where bi is the scaler backscattered field from the ith point. scatterer for a unit. anipli-

tude incident, field and i is a unit vector pointing in the direction of the observation

point. Using the target/observer geometry of Figure 4.4, eqn 4.1 can be written as

N 2

O((0) A x,•cos0+ sin 4 0)} 1 (4.2)

where 0 is the observation angle and is measured from the r-axis and .ri and yj are

the x and y-directed components of ri.

The RCS lobe widths can now be explained by examining eqn 4.2. For small

changes in the observation angle. AO, about 0 = 0', the cos(AO) term is approxi-

nately equal to one; however, the sin(AO) term is a.pproximately equal to AO. As
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0 varies by a small amount, the .ricos0 components (o not c(haiige verY (jinckly

compared to the yj sin 9 components. The RCS fluctuat ions are due to i lie (co'lirewii

addition of the scattered field for each of the N scat terin g centers. If AO is siull. ili

effects of the scatterers in the z-dimension will be small, and the' {(R'S thiu•t at jOji,

will be determined by the scatterers in the y-diniension. Thus, the (('S lobre widi h1.

are determined by the y2 terms in eqn 4.2. At a 90 degree observation angle the

cosine terms in eqn 4.2 fluctuate more rapidly than the sine terms and the .r, ternms

determine the RCS lobe widths.

These results explain the RCS lobing structure of the missile in Figure 4.2.

For the 0 degree observation angle, the y-dimension of the scatterers is less than :3.5

inches. As 0 is varied, the coherent addition of the scattered field changes slowly,

since the y-dimension of the scatterers is small. At a 90 observation angle, the

x-dimension of the scatterers is 30.28 inches, almost 10 times larger than the y-

dimension, arid the resultant RCS lobe widths are about, 10 times smaller than the

0 degree observation angle.

4.2 AIM-9 Missile Autocovariance Predictions

The location and relative magnitude of the misbile scattering centers were

determined from a radar image of the missile. The location of the scattering centers

are shown in Figure 4.4 and Table 4.1.

Table 4.1. Locations of the Scattering centers at a 450 Observation Angle

Scatterer Number Magnitude (dBsm) x-Axis Location y-Axis Location
1 -29.1 15.3 in 0.5 in
2 -40.5 11.1 in 1.28 in
3 -41.9 10.4 in 1.71 in

4 -40.8 -4.2 in 0.5 in
5 -36.8 -15. in 0.67 in



Phase Scattering

Center

Missile

0
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Direction

Figure 4.4. Scattering Center Locations at a 450 Observation Angle
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Figure 4.5. Predicted and Measured RCS Azimuth Patterns

The predicted RCS using the point source model was then compared to the

measured RCS pattern. The measured RCS and the predicted RCS patterns are

shown in Figure 4.5. As seen in the plot, the point source model provides an accept-

able approximation to the RCS lobing structure for the missile. The autocovariance

function is then determined by eqn 4.3 and the point source scattering locations

in Table 4.1. Using eqn 3.24 the autocovariance of the point source distribution is

givenen as

2A'a + 2j4w
""e x iAexp [A'xi + Ajy] (4.3)T;£) - exp - A2 --I

where N = 5 and the locations xi and yi correspond to the values in Table 4.1.

The second scattering model is the uniform distribution of scattering centers.

Recall from chapter 3 that the autocovariance for this distribution function is given

by:

K,,(A,) = N a4 {sinc (2L-A )sinc ( 2 •A) (4.4)
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The missile target dimensions L, and LY are given as 30.28 inches and 3.5 inches

respectively.

4.3 Autocovariance of the AIM-9 Missile at 30, 40, and 45 d(greces

The RCS autocovariance is also empirically estimated using the measured RCS

data and eqn's 3.29 to 3.31. The autocovariance is calculated for three different

observation directions. We will define the de-correlation angle to be the width of

the first or main lobe in autocovariance plots. Recall that, the de-correlation of the

received signal is determined by the RCS lobing structure of the target, i.e. narrower

RCS lobes correspond to smaller de-correlation angles. The predicted autocovariance

results are shown in figures 4.6 to 4.8.

Missilefreq=36 GHz, Start Angle 30 deg off Ncse

rpt di t -

S0 .8 - - -

S 0. 6

0g .4 :i

0. 2

01 3
Delta Aspect Angle (des)

Figure 4.6. Signal Autocovariance, 30 deg off Nose, 5 Scatters

As can be seen from the autocovariance plots the point source distribution and

the uniform distribution predictions agree fairly well for all three observation angles.

For each of the three cases the point source prediction provides a slightly smaller de-

correlation angle than the uniform distribution. For the 30 degree observation angle,

the autocovariance based on the measured data provides a smaller de-correlation

angle than either the point source or uniform distribution prediction. Recall that

the point source locations were determined by a radar image of the target at, a 45
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0.2
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Figure 4.7. Signal Autocovariance, 40 deg off Nose

Missile~freq-36 GA:, Start Anqle 45 deq fft Nos-

Uel'a As1pect AnQIP IdeA

Figure 4.8. Signal Autocovariance 45 deg off Nosc
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degree observation angle. As shown in Figure 4.8, the two predicted autocovariances

and the empirical estimate give the same de-correlation angle of 0.5 degrees.

4.4 Autocovariance of the AIM-9 Missile at 0, 10, and 30 degrces

The autocovariance was also calculated for the nose-on observation angles. For

the point source distribution prediction, the scattering center locations are shown in

Table 4.2. For this case, the scattering center locations were also determined from a

radar image of the target. The autocovariance was determine for observation direc-

tions of 0, 10, and 30 degrees off the nose of the missile. The resultant autocovariance

plots are shown in Figure 4.9, 4.10, and 4.11.

Table 4.2. Locations of the Scattering centers at a 00 Observation Angle

Scatterer Number Magnitude (dBsm) x-Axis Location y-Axis Location
1 -40.8 15.3 in 0 in
2 -39.8 10.4 in 1.17 in
3 -46.2 2.8 in .5 in

4 -38.0 -5.2 in 0.5 in
5 -46.8 -11.6 in 0.5 in
6 -52.2 -8.0 in 0.5 in
7 -35.1 -14.5 in .67 in
8 -39.6 -13.3 in 1.89 in
9 -39.8 10.4 in -1.71 in
10 -46.2 2.8 in -.5 in
11 -38.0 -5.2 in 0.5 in
12 -46.8 -11.6 in -.5 in
13 -52.2 -8.0 in -.67 in
14 -35.1 -14.5 in -1.89 in

15 -39.6 -13.3 in -1.89 in

For all of the cases considered, the widest, de-correlation angle is for the 0

degree observation angle. Figure 4.9 shows the autocovariance for this case. Thc de-

correlation angle is approximately 2.5 degrees. The nose-on autocovariance should

have the widest de-correlation angle, since the cross range extent of the target is only
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Figure 4.9. Signal Autocovariance, 0 (leg off Nose
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Figure 4.10. Signal Autocovariance, 10 (leg off Nose
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Missilefreq=36 GHz, Start Angle 30 deg off Nose, 15 SCAT

=p.Id.1 ....

odi.1
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g 0.4 6 ,

0 0.2 ! ,• ',

0 v _- . ... ._ _V , -• • . ...'

0 1 2 3 4 5
Delta Aspect Angle (deq)

Figure 4.11. Signal Autocovariance, 30 deg off Nose, 15 Scatters

3.5 inches. Remember that the RCS lobe widths are inversely proportional to the

cross range extent of the target. Since 0 degrees is the smallest cross range extent,

the RCS lobes will be wider and the received signal will fluctuate slower about this

observation angle.

For the 0 degree observation angle all three prediction methods provide the

same de-correlation angle. Figures 4.9 to 4.11 also illustrate how the de-correlation

angle decreases as the observation angle changes from 0 degrees to 30 degrees. For

each of the three cases, the point source distribution prediction and the unifo-m

distribution prediction yield approximately the same de-correlation angle, and the

empirical estimate yields a slightly smaller de-correlation angle for the 10 degree and

30 degree observation angle cases.

It is also interesting to compare Figure 4.6 to Figure 4.11. For Figure 4.6 the

point source locations shown in Table 4.1 were used. The point source locations for

Figure 4.11 are from Table 4.2. As shown in the two tables, the distributions differ

considerably, 5 scattering centers vs 15 scattering centers; however, the autocovari-

ance plot are approximately the same. Using this observation, it seems reasonable

to conclude that a precise determination of the scattering centers is not required to

predict the autocovariance properties.
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4.5 Summary

This chapter has shown how the correlation prediction techniques of chapter

3 are used to determine the autocovariance function for a complex target. For the

cases considered, we found the uniform distribution yields approximately the same

de-correlation angle as the point source distribution. For other types of targets

this might not be the case. The empirical estimate of the autocovariance yields

smaller de-correlation angles than the two predictions. In addition, the uniform

distribution provides approximately the same de-correlation angle as the point source

distribution. Recall that the point source prediction requires the location and relative

magnitude of the target scattering centers. Determining the location and magnitude

of the scattering centers of a complex target is not easy. The uniform distribution

requires only the maximum dimensions of the target and the autocovariance is easily

calculated fer this type of distribution.

4-12



V. Concluding Examples

We are now ready to show how the PD detection model of chapter 2 and the

autocorrelation prediction models of chapters 3 and 4 can be combined to determine

PD for a given radar/target engagement. The results of this chapter will again

emphasize the importance of the correlation parameter, p, in determining PD.

We begin this example by defining the target/radar geometry. Once the flight

geometry is defined, the correlation parameter p is determined from the target au-

tocovariance predictions of chapter 4. PD is then calculated from the eigenvalues of

the signal covariance matrix, using the saddlepoint integration method of chapter 2.

MissileI

Range to Target
5.5 Km

Right
Path

Cross Range Offset;4" 3.1 Km Radar

Figure 5.1. Missile/Radar Engagement Geometry
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The target/radar engagement geometry is shown in Figure 5.1. The missile's

initial position is at 4.5 km down range and 3.1 km cross range from the radar. The

velocity of the missile is set at 600 mph (268 m/s), and the missile flies pass the

radar maintaining the 3.1 km cross range offset. The missile and radar are at the

same altitude, and the pulse repetition frequency of the radar is chosen to be 40 liz.

The probability of false alarm, PEA, is given as 10-6.

For this example, three arbitrary integration intervals were used to illustrate

how to calculate PD using the prediction techniques of chapter 2. The first interval is

one second, or 40 integrated pulses. The second interval is 3 seconds (120 pulses), and

the third interval is 3.75 seconds (140 pulses). For each of the three cases the initial

geometry is shown in Figure 5.1. For this geometry, the initial radar observation

angle is 30 degrees off the nose of the missile.

For the 1 second integration interval, the observation angle changes from 30

degrees to 36.7 degrees, as the missile flies pass the radar. The final observation

angles for the 3 sec and 3.75 sec integration intervals are 40.5 and 42.1 degrees

respectively. Figure 5.2 shows the R.CS azimuth plot of the missile for a 30 to 60

degree observation angle.

The autocovariance was calculated using the point source distribution for the

scattering center locations given in Table 4.1, and the uniform rectangular distribu-

tion model described in chapter 4. The resultant autocovariance functions are shown

in Figure 5.3.

Recall that Kanter (14) assumes a single parameter p to describe the pulse-to-

pulse correlation. This assumption allows the signal autocovariance matrix eigenval-

ties to be computed in a convenient manner. The criteria for choosing this correlation

parameter is somewhat arbitrary. For this analysis, the correlation parameter iq de-

fined in the following manner. Referring to figure 5.3, it is easy to see that the

autocorrelation approaches zero between 0.5 and 1.0 degrees. The (](-correlatioln

angle is defined to be the angle where the autocovariance equals 0.05. To illustrate
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Figure 5.2. Missile RCS Azimuth Plot
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Figure 5.3. Autocovariance for 30 Degrees off Nose
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the sensitivity of PD to the correlation parameter, two additional de-correlation an-

gles of 0.75 and 1.0 degrees were chosen. The pulse-to-pulse exponential correlation

parameter, p, is determined from the de-correlation angle by

0.05topr, (5.1)

where t9 is the time for the target to rotate through the de-correlation angle, and

prf is the pulse repetition frequency of the radar. Using the above method and

the missile/radar engagement geometry described earlier, the de-correlation angles

of 0.5, 0.75, and 1.0 degrees correspond to pulse-to-pulse exponential correlation

parameters of 0.78, 0.84, and 0.88 respectively. Using these correlation parameters,

PD is calculated for each of the three integration intervals. These results are shown

in Figures 5.4, 5.5, and 5.6.

Missle, freq=36 GHZ, pjfý40, Inteqration time- is

p-O.79-

0.8 --....

0.6 -- -

PD0 .
0

0.4 ... . .--

-10 -5 0 5 10 15

Signal-to-Noise Ratio (db)

Figure 5.4. Pd for 1 sec Observation Time

Again, for we see the same type of results that we saw in chapter 2. Recall tlhat

the more rapidly fluctuating targets have a smaller correlation parameter. For P[ less

than 0.4, the correlation parameter has only a marginal effect, on the determination of
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Figure 5.5. Pd for 3 sec Observation Time

Missle,freq=36GHZ, prf=40, Integrdtion time=3.75s
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Figure 5.6. Pd for 3.75 sec Observation Time
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PD. For values of PD greater than 0.4, the correlation parameter becomes important

in determining PD.

Consider the 1 sec integration interval case and PD = 0.95. The less fluctuating

signal, p = 0.88, requires and 1.5 dB higher signal-to-noise ratio to achieve the same

PD as the more fluctuating signal of p = 0.78. Figures 5.5 and 5.6 also show that

the less fluctuating signals required higher signal-to-noise ratios to achieve the same

PD.

The above example illustrates how the detection and correlation models from

chapters 2 and 3 can be used to determined the PD for a given target/radar en-

gagement. This example also illustrates the importance of modeling the correlation

properties in determining PD.
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VI. Conclusions

In chapter 2 we showed how the detection of correlated radar returns could

be computed. The correlated radar return detection was provided by Swerling (18);

however, the required signal covariance eigenvalues are not easily calculated. Kanter

(14) provided a convenient means for determining these eigenvalues using an ex-

ponential correlation parameter; however, summation errors limited the number of

integrated pulses to less than 30. This limitation was overcome through the use of

saddlepoint integration and the associated saddlepoint approximations introduced by

Carl Helstrom (10). The importance of the correlation parameter p in determining

PD was then shown using these techniques.

Chapter 3 provided us with several methods for predicting the signal autoco-

variance function. The autocovariance is determined by the inverse Fourier transform

of the target scattering center distribution. The two distributions we concentrated

on were a point scurce and a uniform distribution; however, other types of distribu-

tions could also be used. In-addition, we showed how the autocovariance could be

empirically estimated from the measured RCS data.

The autocovariance was then predicted for an AIM-9 missile using the tech-

niques described in chapter 3. For this target, the point source and uniform distri-

butions yielded the same de-correlation angle for all the aspect angles considered.

Finally, PD was calculated for the missile using the detection techniques of chap-

ter 2. The results of these calculations once again illustrates the importance of the

correlation parameter in determining PD.

6. 1 Follow-on Efforts

The first follow-on effort to this thesis should be to use the detection and cor-

relation prediction techniques to determine the angular RCS sampling requirements.
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Additionally, the partially correlation detection techniques could be used to

determine how the shape of the autocovariance function affects PD.

The autocovariance prediction techniques should be applied to other types

of targets, to determine if the point source and uniform distributions are the best

distributions for predicting the autocovariance.
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Appendix A. Derivation of L(s)

The derivation for the calculating the Laplace transform of G(v) closely follows

the original work of Peter Swerling (18). This derivation is included because it

provides us with a method for calculating the PD of partially correlated radar return

signals. The radar receiver model and assumptions on the signal statistics are given

in chapter 2. Recall that before we can calculate PD, we first manipulate G(v) into a

form which can be integrated. To do this, we first take the Lapiace transform, L(s),

of the integrated output pdf G(v), which is given as

L(s) = c G(v)dv. (A.1)
0

The in-phase and quadrature channel detector outputs, xi and yi, are defined by the

random vectors Ux and U1 as

• -(X I , ., X N ) U y -(yI , ., YN ). (A .2)

We will also assume that U, and Uy are mutually statistically independent. Ux and

U. will have identical signal covariance matrixes, C, with individual elements cij:

c,,j = Elz, zj], ?i= 1... N, J = I1... N, (A.3)

where E[] is the expectation operator. In-addition, the detector output for the ith

pulse is assumed to have a Rayleigh pdf described by

p(z!) exp Zi) (A.4)

The Laplace transform of G(v) can be computed by first considering the conditional

pdf for v. The Laplace transform of this conditional pdf is given by the well known
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transform (18)

L(s I v)- (1 S)N Ijexp [ 2 +2) (A.5)
i=l

The Laplace transform of G(v), L(s), is equal to this expression averaged over the

probability distributions of Ux and U,. Using the mutual independence of the random

vectors U•, U., the Laplace transform can be written as

L(s) I (exp -S 2(x2 + Y ) dP(Ux)dP(UJy) (A.6)

dP(U,)dP(Uy) - (2 i 1 exp - Ec-l(xix + yiyj)dUtxddy (A.7)
(27rl I 1 2i,j=l

Rewriting eqn A.6 with A gives L(s) as

1
L(s) = (1+ 5 )NA' (A.8)

where

A .f exp -•j__ C-,(xixj + yiy,)
(21r)N C /

N 2+ y2) Wd1d] (A.9)
- 1 -- (x2 T)J dJd

Equation A.8 can be further simplified if we define the matrixes 'I(s) and r(s) by

Ti(S) - (A.10)C-1 + 2s•

and

F(S) -2ID(S) (A.11)
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Substituting in the above results, eqn A.9 is reduces to

A [F() (27r)NI exp [ N (S)(xj-ijl + YiYj) . (A.12)

The term in the parenthesis of eqn A.12 is just the integral of the pdf, which equals

one. Thus, L(s) reduces to

L(s)- (1+ N Lr•]"(A. 13)

Equation A.13 can also be expressed in terms of the eigenvalues of T(s) and the

eigenvalues of the inverse signal covariance matrix, A', where

i + s
1±5 (A.14)

and
N

r(o) iA' (A. 15)

F(s) ( + A' 2 (A.16)

Substituting in the above results gives the simplified form of L(s):

1~)=ý N [ 2s1
L(s)- (1-s), 1 + (1-')AJ (A.17)

i=1 (I+sAl

Equation A.17 can also be expressed in terms of the normalized signal covariance

matrix eigenvalues if the following substitution is made for A):

A' 22 . (A.18)
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After some minor simplifications, eqn A.17 is given as:

N

L(s) =11 + s(1 + •A) (a.19)
i=114-sl+Xj

The PD is then determined by taking the inverse Laplace transform of eqn A.19 and

integrating the resultant pdf from the threshold, VT to infinity.
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Appendix B. Determination of the Exponential Covariance Matrix

Eigenvalues

The following method of calculating the eigenvalues for an exponential co-

variance matrix is taken from Irving Kanter's (14) paper on the detection of the

correlated radar returns. It is included, because it provides an effective method from

calculating the eigenvalues of large matrixes.

First consider the general case where the correlation of noncontiguous pulses

may not be neglected. Recall that the eigenvalues of the full C matrix are required

to calculate the PD. The earlier results of chapter 2 neglected the noncontiguous

pulses, which made the corresponding signal covariance matrix tridiagonal. The

solution of the matrix equation was simplified through the use of the tridiagonal

matrix. The same approach for determining the matrix eigenvalues can be used if

the signal matrix can be made tridiagonal. This is easily done by noting that the

inverse of the signal covariance matrix, C 1 , is a tridiagonal matrix. This inverse

matrix can be written as

1 -p 0 ... 0

-p 1 +p 2  p 0
1

C2 0 ". . . 0 (B.1)

• "'. "'. 1l p2  -p

0 ... 0 -p 1

The original matrix equation to be solved is

[C - AI]U = 0 (B.2)
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which can be rewritten for the tridiagonal inverse matrix as

(1- p2) (C-I -I) V = 0 (B.3)

Recall the sum of the eigenvalues equals the trace of C giving the relation

N

-: An = N. (B.4)

The equivalent homogeneous boundary value problem can be written as a set of

homogeneous second order difference equations

PVn-l+ + p2 A-P2)Vn--pVn+l=O, n=1,...,N (B.5)

with the boundary conditions

Vo - pV1 = 0 (B.6)

VN+I - PVN = 0

Since the equation is linear and has constant coefficients, there are two solution in

the form of

v, = _Y7  (B.7)

where -y is given as

2 1/2

-l+p2  + p2 A P 42p2 (B.8)

The condition

(I + p2 _ (1 - p2 )/A)/(2p) 1!Ž 1 (B.9)
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implies either A > (1 + p)/(l- p) or A < (1- p)/(l + p) eqn B.4 cannot be satisfied.

Thus, we introduce the real angle 0 by

1 + p 2 -- p2

Cos0 -- 2p (B.10)

and write the solution in the form of eqn 2.24. Application of the boundary conditions

then yields the equations

[1 - pcosO]K, - [psin]K2 = 0 (B.11)

[cos(N + 1)9- pcos NO]K, + [sin(N + 1)9- psin NO]K 2 =0 (B.12)

whose determinant must vanish. Thus, 0 obeys the transcendental equation

sin(N + 1)0 - 2psin NO + p2 sin(N - 1)0 = 0. (B.13)

Since the values 0 = 0, 7r do not permit a nontrivial solution to the boundary value

problem, the roots of eqn B.13 again line in the open interval (0, 7r). Since it has not

been possible to solve eqn B.13 analytically, the following remarks allow a numerical

solution to be easily achieved: To show that there are exactly N roots between 0

and 7r, we first write as

[(I +p 2 )cosO-2p]sinNO+[(1-p 2)sinO]cosNO=0 (B.14)

and then introduce the function 0(0) by means of

sin 0(0) (1 -p)-i (B. 15)
1 +p 2 -2pcos0

(1 + p2 )cos0 - 2p
1 + p2 

- 2pcosO
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so that eqn B.14 becomes

sin[N0 + 0(0)] = 0. (B.17)

The derivative of 0 with respect to 0 yields the condition:

dq$ 1 -p 2
d01 Ip2 P2p > 0  

(B.1S)d l+ p2 -2p cosO0

0(7r) can then be expressed as:

0(70) = 0(0) + j 21 -p = 7r (B.19)
"0,J 1 +P 2 - 2pcos 0

Equation B.17 represents a modulated sinusoid whose total phase increases mono-

tonically from 0 at 0 = 0 to (N + 1)7r at 0 = 7r, it has exactly N distinct zero

crossings in the open interval (0, 7r).

Further, since d2 0/d02 < 0 in (0, 7r) and de/d0 = 1 at cos 0 = p, the function

sin[NO + 0(0)] oscillates more rapidly than does sin(N + 1)0 in the domain 0 < 0 <

cos- 1 p and more slowly (but still more rapidly than does sin(NO) in the domain

cos- 1 p < 0 < 7r. Using these observations concerning the spacing of the roots, it

is an easy matter to accurately locate the roots by means of a Newton-Raphson

method.

Denoting the roots by 01,'-, ON the eigenvalues are given by

1 -- p 1-p 2  l~pI-- < A, I= < I-+- (B.20)
1 + p 1 + p 2 - 2pcos 0, 1 - p

Note that the expansion of eqn B.20 into a power series in p yields a first order

approximation which is identical to eqn 2.27.
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